Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Single-Molecule Detection of H2O2 Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array

Authors
Kim, Jong-HoPatra, Chitta RanjanArkalgud, Jyoti R.Boghossian, Ardemis A.Zhang, JingqingHan, Jae-HeeReuel, Nigel F.Ahn, Jin-HoMukhopadhyay, DebabrataStrano, Michael S.
Issue Date
Oct-2011
Publisher
American Chemical Society
Keywords
single-walled carbon nanotube; near-infrared fluorescence; single-molecule detection; hydrogen peroxide; redox signaling; angiogenesis; europium(III) hydroxide nanorods
Citation
ACS Nano, v.5, no.10, pp 7848 - 7857
Pages
10
Indexed
SCI
SCIE
SCOPUS
Journal Title
ACS Nano
Volume
5
Number
10
Start Page
7848
End Page
7857
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/37160
DOI
10.1021/nn201904t
ISSN
1936-0851
1936-086X
Abstract
Reactive oxygen species, specifically hydrogen peroxide (H2O2), activate signal transduction pathways during angiogenesis and therefore play an Important role in physiological development as well as various pathophysiologies. Herein, we utilize a near-Infrared fluorescent single-walled carbon nanotube (SWNT) sensor array to measure the single-molecule efflux of H2O2 from human umbilical vein endothelial cells (HUVEC) in response to angiogenic stimulation. Two angiogenic agents were investigated: the pro-angiogenic cytokine, vascular endothelial growth factor A (VEGF-A) and the recently identified inorganic pro-angiogenic factor, europium(III) hydroxide in nanorod form. The nanosensor array consists of a SWNT embedded within a collagen matrix that exhibits high selectivity and sensitivity to single molecules of H2O2. A calibration from 123 to 400 nM quantifies the production of H2O2 at nanomolar concentration in HUVEC with 1 s temporal and 300 nm spatial resolutions. We find that the production of H2O2 following VEGF stimulation is elevated outside of HUVEC, but not for stimulation via nanorods, while increased generation is observed in the cytoplasm for both cases, suggesting two distinct signaling pathways.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jong-Ho photo

Kim, Jong-Ho
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE