Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophyopen access

Authors
Hulot, Jean-SebastienFauconnier, JeremyRamanujam, DeepakChaanine, AntoineAubart, FleurSassi, YassineMerkle, SabineCazorla, OlivierOuille, AudeDupuis, MorganHadri, LahouariaJeong, DongtakMuehlstedt, SilkeSchmitt, JoachimBraun, AttilaBenard, LudovicSaliba, YouakimLaggerbauer, BernhardNieswandt, BernhardLacampagne, AlainHajjar, Roger J.Lompre, Anne-MarieEngelhardt, Stefan
Issue Date
Aug-2011
Publisher
LIPPINCOTT WILLIAMS & WILKINS
Keywords
calcium; myocytes, cardiac; hypertrophy; gene therapy; STIM1 protein, human
Citation
CIRCULATION, v.124, no.7, pp.796 - U109
Indexed
SCIE
SCOPUS
Journal Title
CIRCULATION
Volume
124
Number
7
Start Page
796
End Page
U109
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/37245
DOI
10.1161/CIRCULATIONAHA.111.031229
ISSN
0009-7322
Abstract
Background-Cardiomyocytes use Ca2+ not only in excitation-contraction coupling but also as a signaling molecule promoting, for example, cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in cardiomyocytes in the presence of the rapid and large Ca2+ fluctuations that occur during excitation-contraction coupling. A potential route is store-operated Ca2+ entry, a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). Store-operated Ca2+ entry can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+ entry with respect to cardiac hypertrophy in vitro and in vivo. Methods and Results-Consistent with earlier reports, we found drug-inducible store-operated Ca2+ entry in neonatal rat cardiomyocytes, which was dependent on STIM1. Although this STIM1-dependent, drug-inducible store-operated Ca2+ entry was only marginal in adult cardiomyocytes isolated from control hearts, it increased significantly in cardiomyocytes isolated from adult rats that had developed compensated cardiac hypertrophy after abdominal aortic banding. Moreover, we detected an inwardly rectifying current in hypertrophic cardiomyocytes that occurs under native conditions (ie, in the absence of drug-induced store depletion) and is dependent on STIM1. By manipulating its expression, we found STIM1 to be both sufficient and necessary for cardiomyocyte hypertrophy in vitro and in the adult heart in vivo. Stim1 silencing by adeno-associated viruses of serotype 9-mediated gene transfer protected rats from pressure overload-induced cardiac hypertrophy. Conclusion-By controlling a previously unrecognized sarcolemmal current, STIM1 promotes cardiac hypertrophy. (Circulation. 2011;124:796-805.)
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 의약생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Dong tak photo

Jeong, Dong tak
ERICA 과학기술융합대학 (ERICA 의약생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE