Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

On-Chip Immunoassay Using Surface-Enhanced Raman Scattering of Hollow Gold Nanospheres

Authors
Chon, HyangahLim, ChaesungHa, Seung-MoAhn, YoominLee, Eun KyuChang, Soo-IkSeong, Gi HunChoo, Jaebum
Issue Date
Jun-2010
Publisher
AMER CHEMICAL SOC
Keywords
LABELED IMMUNOGOLD NANOPARTICLES; POLYDIMETHYLSILOXANE; SPECTROSCOPY; SUBSTRATE; MICROFLUIDIC CHANNEL; ANTIBODY; SENSOR; SENSITIVE TRACE ANALYSIS; AGGREGATION; PARALLEL
Citation
ANALYTICAL CHEMISTRY, v.82, no.12, pp 5290 - 5295
Pages
6
Indexed
SCI
SCIE
SCOPUS
Journal Title
ANALYTICAL CHEMISTRY
Volume
82
Number
12
Start Page
5290
End Page
5295
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/39716
DOI
10.1021/ac100736t
ISSN
0003-2700
1520-6882
Abstract
A surface-enhanced Raman scattering (SERS)-based gradient optofluidic sensor has been developed for a fast and sensitive immunoassay. In this work, a novel microfluidic sensor with functional internal structures has been designed and fabricated. This sensor is composed of three compartments consisting of the gradient channel that serially dilutes the target marker, the injection and mixing area of antibody-conjugated hollow gold nanospheres and magnetic beads, and the trapping area of sandwich immunocomplexes using multiple solenoids. Quantitative analysis of a specific target marker is performed by analyzing its characteristic SERS signals. This SERS-based gradient optofluidic sensor can replace the set of microwells or microtubes used in manual serial dilutions that have been traditionally used in enzyme-linked immunosorbent assay (ELISA)-type assays. The limit of detection for rabbit immunoglobin (IgG) is estimated to be 1-10 ng/mL. This novel SERS-based optofluidic immunoassay system is expected to be a powerful clinical tool for the fast and sensitive medical diagnosis of a disease.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seong, Gi Hun photo

Seong, Gi Hun
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE