Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanical Properties of Silicon Nanowires

Authors
Sohn, Young-SooPark, JinsungYoon, GwonchanSong, JiseokJee, Sang-WonLee, Jung-HoNa, SungsooKwon, TaeyunEom, Kilho
Issue Date
Jan-2010
Publisher
Springer Verlag
Keywords
Silicon nanowire; Elastic modulus; Nanoindentation; Atomic force microscope
Citation
Nanoscale Research Letters, v.5, no.1, pp.211 - 216
Indexed
SCIE
SCOPUS
Journal Title
Nanoscale Research Letters
Volume
5
Number
1
Start Page
211
End Page
216
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/40059
DOI
10.1007/s11671-009-9467-7
ISSN
1931-7573
Abstract
Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from similar to 100 to similar to 600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of > 100 nm.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jung-Ho photo

Lee, Jung-Ho
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE