Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Barrier metal properties of amorphous tantalum nitride thin films between platinum and silicon deposited using remote plasma metal organic chemical vapor method

Authors
Han, Chang heeCho, Kwang namOh, Jae eungPaek, Su hyounPark, Chang sooLee, Sang inLee, Moon yongLee, Jong gil
Issue Date
May-1998
Publisher
JAPAN J APPLIED PHYSICS
Keywords
diffusion barrier; MOCVD; tantalum nitride; amorphous thin film; thermal stability; plasma process
Citation
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, v.37, no.5R, pp 2646 - 2651
Pages
6
Indexed
SCIE
SCOPUS
Journal Title
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS
Volume
37
Number
5R
Start Page
2646
End Page
2651
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/47020
DOI
10.1143/JJAP.37.2646
ISSN
0021-4922
1347-4065
Abstract
Amorphous TaN thin films have been prepared by remote plasma-assisted metal organic chemical vapor deposition using pentakis-dimethyl-amino-tantalum (PDMATa) in hydrogen plasma. The dependence of film properties such as resistivity, impurity contents, and microstructures on deposition conditions is reported. All obtained films have been tested as diffusion barriers between platinum and silicon in a stacked-capacitor type memory cell for future, high-density ferroelectric memories. X-ray photoelectron spectroscopy (XPS) has been used to determine the nature of carbon incorporation into the film, which is responsible for the observed microstructure of the deposited film. Recrystallization occurs at an annealing temperatures of 1000 degrees C in an oxygen-containing (10%) ambient, showing (111) TaN, [bcc] Ta, and orthorhombic Ta2O5. It was determined that a TaN barrier layer can be successfully applied as a barrier layer between platinum and silicon (700 degrees C for 30 min in an oxygen-containing ambient), preventing the silicidation reaction of silicon with a Pt electrode as well as the oxidation of the underlying capacitor electrode during the capacitor formation process.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE