Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interactionopen access

Authors
Choi, U. HyeokPark, Ji HunKim, Jaekyun
Issue Date
Jul-2018
Publisher
MDPI
Keywords
nanowire spacing; dielectrophoretic force; nanowire-nanowire electrostatic interaction
Citation
Nanomaterials, v.8, no.7, pp.1 - 12
Indexed
SCIE
SCOPUS
Journal Title
Nanomaterials
Volume
8
Number
7
Start Page
1
End Page
12
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/5797
DOI
10.3390/nano8070456
ISSN
2079-4991
Abstract
Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF PHOTONICS AND NANOELECTRONICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Jaekyun photo

KIM, Jaekyun
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF PHOTONICS AND NANOELECTRONICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE