Real-time fault detection system for large scale grid integrated solar photovoltaic power plants
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Iqbal, Muhammad Saad | - |
dc.contributor.author | Niazi, Yasir Amir Khan | - |
dc.contributor.author | Amir Khan, Umer | - |
dc.contributor.author | Lee, Bang-Wook | - |
dc.date.accessioned | 2021-06-22T04:43:23Z | - |
dc.date.available | 2021-06-22T04:43:23Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.issn | 0142-0615 | - |
dc.identifier.issn | 1879-3517 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/615 | - |
dc.description.abstract | A new fault detection system is proposed in this study for large-scale grid-tied PV power plants. The fault detection system performs string level comparison of DC power of Actual PV Plant and a simulated PV plant, referred as Theoretical PV Plant. The comparison is performed with a statistical tool which distinguishes a faulty condition and identifies the nature of the fault. This statistical tool is used as outlier detector based on the William Gosset's (Student's) T-Test. The Theoretical PV Plant generates power in a simulation tool using inputs of irradiance and PV module temperature, both obtained from sensors at the Actual PV Plant. The string power of Actual PV Plant is also obtained in the simulation from the data logger in real-time environment. These string powers of Actual and Theoretical PV Plants are compared to find a faulty condition. A GUI is developed where the fault alarms appear on Real-time Status Monitor whenever a fault occurs in the Actual PV Plant. The proposed fault detection system has been validated on a 125 kWp grid-connected PV plant. © 2021 Elsevier Ltd | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier Ltd | - |
dc.title | Real-time fault detection system for large scale grid integrated solar photovoltaic power plants | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.ijepes.2021.106902 | - |
dc.identifier.scopusid | 2-s2.0-85102053174 | - |
dc.identifier.wosid | 000649660000001 | - |
dc.identifier.bibliographicCitation | International Journal of Electrical Power and Energy Systems, v.130, pp 1 - 13 | - |
dc.citation.title | International Journal of Electrical Power and Energy Systems | - |
dc.citation.volume | 130 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 13 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | Electric power transmission networks | - |
dc.subject.keywordPlus | Photovoltaic cells | - |
dc.subject.keywordPlus | Solar concentrators | - |
dc.subject.keywordPlus | Solar energy | - |
dc.subject.keywordPlus | Solar power generation | - |
dc.subject.keywordPlus | Solar power plants | - |
dc.subject.keywordPlus | Statistical mechanics | - |
dc.subject.keywordPlus | Fault detection and identification | - |
dc.subject.keywordPlus | Fault detection systems | - |
dc.subject.keywordPlus | Faulty condition | - |
dc.subject.keywordPlus | Large scale grids | - |
dc.subject.keywordPlus | Large-scale solar power plant | - |
dc.subject.keywordPlus | Power | - |
dc.subject.keywordPlus | PV plants | - |
dc.subject.keywordPlus | Real time fault detection | - |
dc.subject.keywordPlus | Solar photovoltaics | - |
dc.subject.keywordPlus | Statistical tools | - |
dc.subject.keywordPlus | Fault detection | - |
dc.subject.keywordAuthor | Fault detection and identification | - |
dc.subject.keywordAuthor | Large-scale solar power plants | - |
dc.subject.keywordAuthor | Solar photovoltaic | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0142061521001423?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.