Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

Authors
Zheng, Xiao-TongHui, ChangYeh, Sang-Wook
Issue Date
Jun-2018
Publisher
Springer Verlag
Citation
Climate Dynamics, v.50, no.11-12, pp 4019 - 4035
Pages
17
Indexed
SCI
SCIE
SCOPUS
Journal Title
Climate Dynamics
Volume
50
Number
11-12
Start Page
4019
End Page
4035
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/6192
DOI
10.1007/s00382-017-3859-7
ISSN
0930-7575
1432-0894
Abstract
El Nio-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of similar to 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yeh, Sang Wook photo

Yeh, Sang Wook
ERICA 공학대학 (ERICA 해양융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE