Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sea Sand-Derived Magnesium Silicide as a Reactive Precursor for Silicon-Based Composite Electrodes of Lithium-Ion Battery

Authors
Ahn, JihoonLee, Dae-HyeokKang, Min SeokLee, Kyung-JaeLee, Jin-KyuSung, Yung-EunYoo, Won Cheol
Issue Date
Aug-2017
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Magnesiothermic reduction; magnesium silicide; Si@C; porous Si; Li-ion battery
Citation
ELECTROCHIMICA ACTA, v.245, pp 893 - 901
Pages
9
Indexed
SCI
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
245
Start Page
893
End Page
901
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/9075
DOI
10.1016/j.electacta.2017.05.164
ISSN
0013-4686
1873-3859
Abstract
Recently, it has been clearly elucidated that nanostructured Si-based composites hybridized with protective and conductive materials can present enhanced electrochemical performance as anodes for Liion batteries (LIBs). One of remaining issues is to develop a sustainable and economic method to synthesize these composites on a large scale for industrial applications. Herein, we introduce a modified magnesiothermic reaction route to prepare the aforementioned Si-based composite electrodes using seasand derived Mg2Si as a reactive precursor. Owing to its reducibility and lability, Mg2Si can readily reduce group IVA oxides, such as Na2CO3, SiO2, GeO2, and SnO2, resulting in macroporous Si surrounded by the reduced forms of the counter reactants (C, Si, Ge, and Sn, respectively), some of which can be electrochemically attractive. Notably, the porous Si-based composite can be synthesized by a simple solid state reaction, so simplicity and scalability can be obtained. Also, the sea sand precursor is naturally-abundant; hence this process can be cost-effective, scalable, and sustainable. Porous Si@C composite can be synthesized from the modified magnesiothermic reaction using a sea sand-derived Mg2Si precursor, showing a specific capacity of 1000 mAh/g at 200th cycle. Potentially this process can be used for practical synthesis of Si-based composites. (C) 2017 Elsevier Ltd. All rights reserved.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher yoo, won cheol photo

yoo, won cheol
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE