Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition

Authors
Seo, SeunghwanKang, Beom-SeokLee, Je-JunRyu, Hyo-JunKim, SungjunKim, HyeongjunOh, SeyongShim, JaewooHeo, KeunOh, SaeroonterPark, Jin-Hong
Issue Date
Aug-2020
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE COMMUNICATIONS, v.11, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
11
Number
1
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/943
DOI
10.1038/s41467-020-17849-3
ISSN
2041-1723
Abstract
Brain-inspired parallel computing, which is typically performed using a hardware neural-network platform consisting of numerous artificial synapses, is a promising technology for effectively handling large amounts of informational data. However, the reported nonlinear and asymmetric conductance-update characteristics of artificial synapses prevent a hardware neural-network from delivering the same high-level training and inference accuracies as those delivered by a software neural-network. Here, we developed an artificial van-der-Waals hybrid synapse that features linear and symmetric conductance-update characteristics. Tungsten diselenide and molybdenum disulfide channels were used selectively to potentiate and depress conductance. Subsequently, via training and inference simulation, we demonstrated the feasibility of our hybrid synapse toward a hardware neural-network and also delivered high recognition rates that were comparable to those delivered using a software neural-network. This simulation involving the use of acoustic patterns was performed with a neural network that was theoretically formed with the characteristics of the hybrid synapses. Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher OH, SAE ROON TER photo

OH, SAE ROON TER
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE