Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-Aopen access

Authors
Kim, JeehyeongKarim, Nzabanita AbdoulCho, Sunghyun
Issue Date
May-2017
Publisher
MDPI
Keywords
wireless sensor network (WSN); device-to-device (D2D); fractional frequency reuse (FFR); almost blank sub-frame (ABS); long-term evolution (LTE); signal to interference plus noise ratio (SINR)
Citation
SENSORS, v.17, no.5, pp 1 - 18
Pages
18
Indexed
SCIE
SCOPUS
Journal Title
SENSORS
Volume
17
Number
5
Start Page
1
End Page
18
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/9651
DOI
10.3390/s17051088
ISSN
1424-8220
1424-3210
Abstract
Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.
Files in This Item
Appears in
Collections
COLLEGE OF COMPUTING > ERICA 컴퓨터학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Sung hyun photo

Cho, Sung hyun
ERICA 소프트웨어융합대학 (ERICA 컴퓨터학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE