Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation

Authors
Lee, JeongminLee, Byoung WooKang, Hae-EunChoe, Kevine K.Kwon, MoosikRyou, Chongsuk
Issue Date
May-2017
Publisher
한국미생물·생명공학회
Keywords
Prion protein; dominant negative mutant; cofactor; plasminogen
Citation
Journal of Microbiology and Biotechnology, v.27, no.5, pp.1023 - 1031
Indexed
SCIE
SCOPUS
KCI
Journal Title
Journal of Microbiology and Biotechnology
Volume
27
Number
5
Start Page
1023
End Page
1031
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/9652
DOI
10.4014/jmb.1702.02029
ISSN
1017-7825
Abstract
The conformational change of cellular prion protein (PrPC) to its misfolded counterpart, termed PrPSc, is mediated by a hypothesized cellular cofactor. This cofactor is believed to interact directly with certain amino acid residues of PrPC. When these are mutated into cationic amino acid residues, PrPSc formation and prion replication halt in a dominant negative (DN) manner, presumably due to strong binding of the cofactor to mutated PrPC, designated as DN PrP mutants. Previous studies demonstrated that plasminogen and its kringle domains bind to PrP and accelerate PrPSc generation. In this study, in vitro binding analysis of kringle domains of plasminogen to Q167R DN mutant PrP (PrPQ167R) was performed in parallel with the wild type (WT) and Q218K DN mutant PrP (PrPQ218K). The binding affinity of PrPQ167R was higher than that of WT PrP, but lower than that of PrPQ218K. Scatchard analysis further indicated that, like PrPQ218K and WT PrP, PrPQ167R interaction with plasminogen occurred at multiple sites, suggesting cooperativity in this interaction. Competitive binding analysis using L-lysine or L-arginine confirmed the increase of the specificity and binding affinity of the interaction as PrP acquired DN mutations. Circular dichroism spectroscopy demonstrated that the recombinant PrPs used in this study retained the alpha-helix-rich structure. The alpha-helix unfolding study revealed similar conformational stability for WT and DN-mutated PrPs. This study provides an additional piece of biochemical evidence concerning the interaction of plasminogen with DN mutant PrPs.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choe, Kyung sik Kevin photo

Choe, Kyung sik Kevin
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE