Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Immunostimulatory Activity of Synbiotics Using Lactococcus lactis SG-030 and Glucooligosaccharides from Weissella cibaria YRK005

Authors
Kwon, AyeonPark, Young-Seo
Issue Date
Dec-2021
Publisher
MDPI
Keywords
Glucooligosaccharides; Immunostimulatory activity; Lactic acid bacteria; Lactococcus lactis; Prebiotics; Probiotics; Synbiotics; Weissella cibaria
Citation
Microorganisms, v.9, no.12
Journal Title
Microorganisms
Volume
9
Number
12
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/83160
DOI
10.3390/microorganisms9122437
ISSN
2076-2607
Abstract
Much attention has been recently paid to the health benefits of synbiotics, a combination of probiotics and prebiotics. In this study, synbiotics were prepared by combining lactic acid bacteria with potential as probiotics and purified glucooligosaccharides, and their immunostimulatory activity was evaluated using RAW 264.7 macrophage cells. A lactic acid bacteria strain with high antioxidant activity, acid and bile salt tolerance, adhesion to Caco-2 cells, and nitric oxide (NO) production was selected as a potential probiotic strain. The selected strain, isolated from forsythia, was identified as Lactococcus lactis SG-030. The purified glucooligosaccharides produced from Weissella cibaria YRK005 were used as prebiotics. RAW 264.7 cells were treated with synbiotics in two ways. One way was a simultaneous treatment with lactic acid bacteria and glucooligosaccharides. The other way was to pre-culture the lactic acid bacteria with glucooligosaccharides followed by treatment with synbiotic culture broth or synbiotic culture supernatant. In both cases, synbiotics synergistically increased NO production in RAW 264.7 cells. In addition, synbiotics treatment increased the expression of tissue necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase genes. Synbiotics also increased the expression of P38, extracellular signal-regulated kinases, c-Jun N-terminal kinases, phosphoinositide 3-kinase, and Akt proteins. The results confirmed that the synbiotics prepared in this study exhibited synergistic immunostimulatory activity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 식품생물공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Young Seo photo

Park, Young Seo
BioNano Technology (Department of Food Science & Biotechnology)
Read more

Altmetrics

Total Views & Downloads

BROWSE