Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

PSEN2 Thr421Met Mutation in a Patient with Early Onset Alzheimer's Diseaseopen access

Authors
Yang, YoungSoonBagyinszky, EvaAn, Seong Soo A.Kim, SangYun
Issue Date
Nov-2022
Publisher
MDPI
Keywords
PSEN2; mutation; early onset AD; risk factors; risk modifiers; whole exome sequencing
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, no.21
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
23
Number
21
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/86215
DOI
10.3390/ijms232113331
ISSN
1661-6596
Abstract
Presenilin-2 (PSEN2) mutation Thr421Met was identified from a 57-years old patient with early onset Alzheimer's disease (EOAD) for the first time in Korea. Previously, this mutation was discovered in an EOAD patient in Japan without a change on amyloid production from the cellular study. Both Korean and Japanese patients developed the disease in their 50s. Memory loss was prominent in both cases, but no additional clinical information was available on the Japanese patient. Magnetic resonance imaging (MRI) images of the Korean patient revealed asymmetric atrophies in both temporo-parietal lobes. In addition, amyloid positron emission tomography (PET) also revealed amyloid deposits in the gray matter of the temporo-parietal lobes asymmetrically. PSEN2 Thr421 was conserved among a majority of vertebrates (such as zebras, elephants, and giant pandas); hence, Thr421 could play an important role in its functions and any mutations could cause detrimental ramifications in its interactions. Interestingly, PSEN2 Thr421 could have homology with PSEN1 Thr440, as PSEN1 T440del mutations were reported from patients with AD or dementia with Lewy bodies. Hence, the changed amino acid from threonine to methionine of PSEN2 Thr421 could cause significant structural alterations in causing local protein dynamics, leading to its pathogenicity in EOAD. Lastly, PSEN2 Thr421Met may interact with other mutations in neurodegenerative disease related genes, which were found in the proband patient, such as ATP binding cassette subfamily A member 7 (ABCA7), Notch Receptor 3 (NOTCH3), or Leucine-rich repeat kinase 2 (LRRK2). These interactions of pathway networks among PSEN2 and other disease risk factors could be responsible for the disease phenotype through other pathways. For example, PSEN2 and ABCA7 may impact amyloid processing and reduce amyloid clearance. Interaction between PSEN2 and NOTCH3 variants may be associated with abnormal NOTCH signaling and a lower degree of neuroprotection. Along with LRRK2 variants, PSEN2 Thr421Met may impact neurodegeneration through Wnt related pathways. In the future, cellular studies of more than one mutation by CRISPR-Cas9 method along with biomarker profiles could be helpful to understand the complicated pathways.
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 바이오나노학과 > 1. Journal Articles
산업·환경대학원 > 산업환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher An, Seong Soo A. photo

An, Seong Soo A.
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE