Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-Assembled Monolayer Doping for MoTe<sub>2</sub> Field-Effect Transistors: Overcoming PN Doping Challenges in Transition Metal Dichalcogenides

Authors
Lee, Dong HyunRabeel, MuhammadHan, YoungminKim, HonggyunKhan, Muhammad FarooqKim, Deok-keeYoo, Hocheon
Issue Date
Oct-2023
Publisher
AMER CHEMICAL SOC
Keywords
transition metal dichalcogenides; molybdenumditelluride; self-assembled monolayer; dipole effect; complementarylogics
Citation
ACS APPLIED MATERIALS & INTERFACES, v.15, no.44, pp 51518 - 51526
Pages
9
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
15
Number
44
Start Page
51518
End Page
51526
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/89629
DOI
10.1021/acsami.3c11430
ISSN
1944-8244
1944-8252
Abstract
Transition metal dichalcogenides (TMDs) have gained significant attention as next-generation semiconductor materials that could potentially overcome the integration limits of silicon-based electronic devices. However, a challenge in utilizing TMDs as semiconductors is the lack of an established PN doping method to effectively control their electrical properties, unlike those of silicon-based semiconductors. Conventional PN doping methods, such as ion implantation, can induce lattice damage in TMDs. Thus, chemical doping methods that can control the Schottky barrier while minimizing lattice damage are desirable. Here, we focus on the molybdenum ditelluride (2H-MoTe2), which has a hexagonal phase and exhibits ambipolar field-effect transistor (FET) properties due to its direct band gap of 1.1 eV, enabling concurrent transport of electrons and holes. We demonstrate the fabrication of p- or n-type unipolar FETs in ambipolar MoTe2 FETs using self-assembled monolayers (SAMs) as chemical dopants. Specifically, we employ 1H,1H,2H,2H perfluorooctyltriethoxysilane and (3-aminopropyl)-triethoxysilane as SAMs for chemical doping. The selective SAMs effectively increase the hole and electron charge transport capabilities in MoTe2 FETs by 18.4- and 4.6-fold, respectively, due to the dipole effect of the SAMs. Furthermore, the Raman shift of MoTe2 by SAM coating confirms the successful p- and n-type doping. Finally, we demonstrate the fabrication of complementary inverters using SAMs-doped MoTe2 FETs, which exhibit clear full-swing capability compared to undoped complementary inverters.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Ho Cheon photo

Yoo, Ho Cheon
반도체대학 (반도체·전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE