Detailed Information

Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads

Material Design of New p-Type Tin Oxyselenide Semiconductor through Valence Band Engineering and Its Device Application

Authors
Kim, TaikyuYoo, BaekeunYoun, YongLee, MisoSong, AeranChung, Kwun-BumHan, SeungwuJeong, Jae Kyeong
Issue Date
Oct-2019
Publisher
AMER CHEMICAL SOC
Keywords
p-type inorganic semiconductor; Sn-Se-O; valence band engineering; high mobility; thermal stability
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.43, pp.40214 - 40221
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
11
Number
43
Start Page
40214
End Page
40221
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/12507
DOI
10.1021/acsami.9b12186
ISSN
1944-8244
Abstract
This paper reports a new p-type tin oxyselenide (SnSeO), which was designed with the concept that the valence band edge from O 2p orbitals in the majority of metal oxides becomes delocalized by hybridizing Se 4p and Sn 5s orbitals. As the Se loading increased, the SnSeO film structures were transformed from tetragonal SnO to orthorhombic SnSe, which was accompanied by an increase in the amorphous phase portion and smooth morphologies. The SnSe0.56O0.44 film annealed at 300 degrees C exhibited the highest Hall mobility (mu(Hall)), 15.0 cm(2) (V s)(-1), and hole carrier density (n(h)), 1.2 X 10(17) cm(-3). The remarkable electrical performance was explained by the low hole effective mass, which was calculated by a first principle calculation. Indeed, the fabricated field-effect transistor (FET) with a p-channel SnSe0.56O0.44 film showed the high field-effect mobility of 5.9 cm(2) (V s)(-1) and an I-ON/OFF ratio of 3 X 10(2). This work demonstrates that anion alloy-based hybridization provides a facile route to the realization of a high-performance p-channel FET and complementary devices.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Jae Kyeong photo

Jeong, Jae Kyeong
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE