Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Minimizing Global Buffer Access in a Deep Learning Accelerator Using a Local Register File with a Rearranged Computational Sequence

Authors
Lee, MinjaeZhang, ZhongfengChoi, SeungwonChoi, Jungwook
Issue Date
Apr-2022
Publisher
MDPI
Keywords
deep learning accelerator; field-programmable gate array (FPGA); local register file; rearrangement of computational sequence
Citation
SENSORS, v.22, no.8, pp.1 - 24
Indexed
SCIE
SCOPUS
Journal Title
SENSORS
Volume
22
Number
8
Start Page
1
End Page
24
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/138975
DOI
10.3390/s22083095
Abstract
We propose a method for minimizing global buffer access within a deep learning accelerator for convolution operations by maximizing the data reuse through a local register file, thereby substituting the local register file access for the power-hungry global buffer access. To fully exploit the merits of data reuse, this study proposes a rearrangement of the computational sequence in a deep learning accelerator. Once input data are read from the global buffer, repeatedly reading the same data is performed only through the local register file, saving significant power consumption. Furthermore, different from prior works that equip local register files in each computation unit, the proposed method enables sharing a local register file along the column of the 2D computation array, saving resources and controlling overhead. The proposed accelerator is implemented on an off-the-shelf field-programmable gate array to verify the functionality and resource utilization. Then, the performance improvement of the proposed method is demonstrated relative to popular deep learning accelerators. Our evaluation indicates that the proposed deep learning accelerator reduces the number of global-buffer accesses to nearly 86.8%, consequently saving up to 72.3% of the power consumption for the input data memory access with a minor increase in resource usage compared to a conventional deep learning accelerator.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Jung wook photo

Choi, Jung wook
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE