Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nano-polycrystalline Ag-doped ZnO layer for steep-slope threshold switching selectorsopen access

Authors
Sahota, AkshayKim, Harrison SejoonMohan, JaidahLe, Dan N.Jung, Yong ChanKim, Si JoonLee, Jang-SikAhn, JinhoHernandez-Arriaga, HeberKim, Jiyoung
Issue Date
1-Nov-2021
Publisher
AMER INST PHYSICS
Citation
AIP ADVANCES, v.11, no.11, pp.1 - 7
Indexed
SCIE
SCOPUS
Journal Title
AIP ADVANCES
Volume
11
Number
11
Start Page
1
End Page
7
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/140328
DOI
10.1063/5.0066311
Abstract
In this work, a nano-polycrystalline Ag-doped ZnO-based threshold switching (TS) selector via a facile co-sputtering technique is investigated without using an Ag active metal layer. The effects of the Ag concentration with respect to OFF-state leakage current (I-off) were studied, and the results demonstrate that by regulating the Ag doping concentration in the switching layer (SL), an electroforming-free switching with an I-on/I-off ratio of & SIM;10(8) could be achieved, having an extremely low I-off value of & SIM;10(-13) A. Furthermore, cycling endurance can also be improved as the formation of a laterally thick and stable filament does not happen promptly with consequent measurements when there is a limited amount of Ag in the SL. The selector device performance enhancement is attributed to the doping-based polycrystalline structure that facilitates enhanced control on filament formation due to the restricted availability and anisotropic diffusion of Ag ions in the polycrystalline ZnO SL, thereby trimming down the overall stochasticity during metallic filament growth. The present study demonstrates that a doping-based polycrystalline SL structure can be implemented in a selector device to augment TS characteristics, i.e., device variances and cycling endurance for adoption in ultra-high density memory applications.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Jinho photo

Ahn, Jinho
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE