Detailed Information

Cited 3 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of Binding Stability of Pu(IV) and PuO2(VI) by Nitrogen Tridentate Ligands in Aqueous Solutionopen access

Authors
Jeong, KeunhongJeong, Hye JinWoo, Seung MinBae, Sungchul
Issue Date
Apr-2020
Publisher
MDPI
Keywords
plutonium; extractant; tridentate; sensor; complexation
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.21, no.8, pp.1 - 8
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
21
Number
8
Start Page
1
End Page
8
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/145914
DOI
10.3390/ijms21082791
ISSN
1661-6596
Abstract
Plutonium has potential applications in energy production in well-controlled nuclear reactors. Since nuclear power plants have great merit as environmentally friendly energy sources with a recyclable system, a recycling system for extracting Pu from spent fuels using suitable extractants has been proposed. Pu leakage is a potential environmental hazard, hence the need for chemical sensor development. Both extractants and chemical sensors involve metal-ligand interactions and to develop efficient extractants and chemical sensors, structural information about Pu ligands must be obtained by quantum calculations. Herein, six representative nitrogen tridentate ligands were introduced, and their binding stabilities were evaluated. The tridentate L6, which contains tri-pyridine chelate with benzene connectors, showed the highest binding energies for Pu(IV) and PuO2(VI) in water. Analysis based on the quantum theory of atoms in molecular analysis, including natural population analysis and electron density studies, provided insight into the bonding characteristics for each structure. We propose that differences in ionic bonding characteristics account for the Pu-ligand stability differences. These results form a basis for designing novel extractants and organic Pu sensors.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 건축공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bae, Sungchul photo

Bae, Sungchul
COLLEGE OF ENGINEERING (SCHOOL OF ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE