Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Continuous-mode separation of fucose and 2,3-butanediol using a three-zone simulated moving bed process and its performance improvement by using partial extract-collection, partial extract-recycle, and partial desorbent-port closing

Authors
Lee, Chung-GiJo, Cheol YeonSong, Ye JinMun, Sungyong
Issue Date
Dec-2018
Publisher
ELSEVIER SCIENCE BV
Keywords
Simulated moving bed; Fucose; 2,3-butanediol; Continuous separation; Operation strategies
Citation
JOURNAL OF CHROMATOGRAPHY A, v.1579, pp.49 - 59
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CHROMATOGRAPHY A
Volume
1579
Start Page
49
End Page
59
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/148887
DOI
10.1016/j.chroma.2018.10.029
ISSN
0021-9673
Abstract
If a multi-component monosugar mixture including fucose was used as the substrates for the Klebsiella oxytoca fermentation, it could offer the following two benefits simultaneously; (i) the removal of all monosugars other than fucose, and (ii) the acquisition of 2,3-butanediol (BD). To utilize such two benefits in favor of the economical efficiency of the fucose production process, it is essential to accomplish a high purity separation between fucose and BD on the basis of a highly -economical mode. To address this issue, we aimed to develop a simulated moving bed (SMB) process for continuous-mode separation of fucose and BD with high purities. It was first found that an Amberchrom-CG71C resin could become a suitable adsorbent for the separation of interest. The intrinsic parameters of fucose and BD on such proven adsorbent were determined, and then applied to the optimal design of the fucose-BD separation SMB. The capability of the designed SMB in ensuring high purities and high yields was experimentally verified. Finally, we devised two potential strategies to make a further improvement in product concentrations and/or desorbent usage while keeping the purities and yields of fucose and BD almost unchanged. The first strategy was based on partial extract-collection and partial extract-discard, which was found to result in 33% higher BD product concentration. The second strategy was based on partial extract-collection, partial extract-recycle, and partial desorbent-port closing, which could lead to 25% lower desorbent usage, 33% higher BD product concentration, and 7% higher fucose product concentration.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Mun, Sung yong photo

Mun, Sung yong
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE