Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Integrating Brain Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy Management Systemopen access

Authors
Kremen, VBrinkmann, BHKim, IGuragain, HNasseri, MMagee, ALAttia, TPNejedly, PSladky, VJo, Hang Joon
Issue Date
Sep-2018
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Epilepsy; deep brain stimulation; implantable devices; seizure detection; seizure prediction; distributed computing
Citation
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM, v.6, pp.1 - 12
Indexed
SCIE
SCOPUS
Journal Title
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM
Volume
6
Start Page
1
End Page
12
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/149332
DOI
10.1109/JTEHM.2018.2869398
ISSN
2168-2372
Abstract
Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in off the body local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.
Files in This Item
Appears in
Collections
서울 의과대학 > 서울 생리학교실 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jo, Hang Joon photo

Jo, Hang Joon
COLLEGE OF MEDICINE (DEPARTMENT OF PHYSIOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE