Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrathin ultrananocrystalline diamond film synthesis by direct current plasma-assisted chemical vapor deposition

Authors
Lee, Hak-JooJeon, HyeongtagLee, Wook-Seong
Issue Date
Oct-2011
Publisher
AMER INST PHYSICS
Citation
JOURNAL OF APPLIED PHYSICS, v.110, no.8, pp.1 - 9
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF APPLIED PHYSICS
Volume
110
Number
8
Start Page
1
End Page
9
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/167521
DOI
10.1063/1.3652752
ISSN
0021-8979
Abstract
The synthesis of ultrathin, mirror-smooth, and void-free ultra-nanocrystalline diamond (UNCD) film was investigated using DC-PACVD. The seeding process was investigated in the previously reported "two-step" seeding scheme, where the substrate was pretreated in microwave hydrocarbon plasma prior to the ultrasonic seeding to enhance seed density; in the present study, DC plasma and hot filament process were adopted for the pretreatment, instead of the conventional microwave plasma. Two types of nano-diamond seed powders of similar grain sizes but with different zeta potentials were also compared. The pretreated substrate surface and the synthesized UNCD film were characterized by near edge x-ray absorption fine structure, FTIR, AFM, high-resolution scanning electron microscope, HR-TEM, and Raman spectroscopy. The electrophoretic light scattering spectroscopy was adopted to characterize the zeta potentials of the seeding suspensions and that of the substrates, respectively. Contrary to the previous report, the pretreatments deteriorated the seed density relative to that of the non-treated substrate. By contrast, the seed density was drastically improved by using a proper type of the nano-diamond seed powder. The seed density variation according to the substrate pretreatments and the type of the seed powders was attributed to the relative values of the zeta potentials of the substrates and that of the seed powders, which indicated the electrostatic nature of the seeding process. The variation of the substrate surface zeta potentials was attributed to the variation in the surface terminations induced by the respective pretreatments. The present DC-PACVD environment ensured that the secondary nucleation was also active enough to generate the densely packed UNCD grains in the growth stage. Consequently, the ultrathin, mirror-smooth and void-free UNCD film of 30 nm in thickness was enabled.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Hyeongtag photo

Jeon, Hyeongtag
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE