Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor

Authors
Jeon, C.-W.Kim, H.-J.Yun, C.Han, X.Kim, Jung Hun
Issue Date
Aug-2021
Publisher
Academic Press
Keywords
Autonomous tillage tractor; Boundary corner turning; Coverage path planner (CPP); Paddy field; Skipped area
Citation
Biosystems Engineering, v.208, pp.79 - 97
Journal Title
Biosystems Engineering
Volume
208
Start Page
79
End Page
97
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/15887
DOI
10.1016/j.biosystemseng.2021.05.008
ISSN
1537-5110
Abstract
Successful use of an auto-guided agricultural machine in paddy fields depends on the ability to generate a full-coverage path consisting of inner and outer-work paths adapted to various field shapes in the presence of an enclosing field boundary. To enhance the performance of a coverage path planner (CPP) developed in our previous study, this article describes the development of a complete CPP for a fully autonomous tillage tractor that provides automatic generation of both inner and outer-work paths, and boundary corner turning methods applicable to polygonal-shaped paddy fields with various corner angles. Computer simulation of the developed turning manoeuvres was conducted using a 3D tractor-driving simulator by analysing the trajectories of a virtual tractor on ground under varying corner angle conditions. A field evaluation was performed with a 60-kW auto-guided tillage tractor equipped with the developed CPP in three different shapes of paddy fields. The results of the computer simulation confirmed that the designed boundary corner turning methods could provide an acceptable level of tracking performance with lateral deviations <70 mm when following boundary corner turning paths. In the field tests, the autonomous tillage tractor successfully followed the whole paths with lateral and heading root-mean-squared errors ranging from 32 to 101 mm and 0.6°–2.2°, respectively, and demonstrated superior tillage performance by reducing the skipped areas of 1.7% (triangle), 0.9% (quadrilateral), and 1.0% (pentagon) of the total area as compared with that of 8.5% obtained with the previously developed system. © 2021 IAgrE
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Hun photo

Kim, Jung Hun
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE