Detailed Information

Cited 16 time in webofscience Cited 14 time in scopus
Metadata Downloads

Systematic and Extensive Emission Tuning of Highly Efficient Cu-In-S-Based Quantum Dots from Visible to Near Infrared

Authors
Yoon, Suk-YoungKim, Jong-HoonJang, Eun-PyoLee, Sun-HyoungJo, Dae-YeonKim, YuriDo, Young RagYang, Heesun
Issue Date
9-Apr-2019
Publisher
AMER CHEMICAL SOC
Citation
CHEMISTRY OF MATERIALS, v.31, no.7, pp.2627 - 2634
Journal Title
CHEMISTRY OF MATERIALS
Volume
31
Number
7
Start Page
2627
End Page
2634
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/1771
DOI
10.1021/acs.chemmater.9b00550
ISSN
0897-4756
Abstract
Group IIIIVI chalcogenides are emerging candidates for the synthesis of efficient quantum dot (QD) emitters, particularly since they are free from environmentally harmful substances such as Cd, Pb, and As. Among them, CuInS (CIS) and CuInSe1xSx (CISeS) are the most common compositions as visible and near-infrared (NIR) QD emitters, respectively. We herein explore efficient synthetic pathways to demonstrate extensively emission-tuned CIS QDs from visible to NIR with high photoluminescence quantum yields (PL QYs) of over 70%. To systematically tune PL, synthetic parameters of CIS core QDs are varied such as Cu/In molar ratio, core growth condition, Ag alloying, and In precursor change, whereas a highly reactive elemental sulfur is commonly adopted for core growth. Starting from visible CIS/ZnS QDs, whose emission is tuned in green (534 nm) to red (625 nm), depending on the Cu/In ratio, their emissions gradually shift in the PL peak to 744 nm by controlling the core growth condition to 806 nm by alloying with Ag and further to 868 nm by switching an In salt precursor from In acetate to In iodide. These NIR-emitting QDs, particularly those having PL peaks longer than 800 nm, possess excellent QYs of 8191%, which are the record values among deep NIR-emitting IIIIVI QDs to date. To enhance the QD stability against environmental stimuli, Al doping into Zn shell is implemented on 868 nm emitting CIS/ZnS QDs, resulting in exceptional photostability under prolonged UV irradiation exposure. These highly luminescent, photostable NIR-emitting CIS/ZnS QDs will be attractive candidates for further application as fluorophores in luminescent solar concentrator and in vivo bioimaging.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yang, Hee sun photo

Yang, Hee sun
Graduate School (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE