Detailed Information

Cited 9 time in webofscience Cited 10 time in scopus
Metadata Downloads

Nonvolatile Electric Double-Layer Transistor Memory Devices Embedded with Au Nanoparticles

Authors
Koo, JaemokYang, JeehyeCho, BoeunJo, HyunwooLee, Keun HyungKang, Moon Sung
Issue Date
Mar-2018
Publisher
AMER CHEMICAL SOC
Keywords
nonvolatile transistor memory device; low-voltage operation; electric double layer; ion gel; Au nanoparticles
Citation
ACS APPLIED MATERIALS & INTERFACES, v.10, no.11, pp.9563 - 9570
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
10
Number
11
Start Page
9563
End Page
9570
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/31928
DOI
10.1021/acsami.8b01902
ISSN
1944-8244
Abstract
We present nonvolatile transistor memory devices that rely on the formation of electric double layer (EDL) at the semiconductor-electrolyte interface. The two critical functional components of the devices are the ion gel electrolyte and gold nanoparticles (NPs). The ion gel electrolyte contains ionic species for EDL formation that allow inducing charges in the semiconductor-electrolyte interface. The gold NPs inserted between the ion gel and the channel layer serve as trapping sites to the induced charges to store the electrical input signals. Two different types of gold NPs were used: one prepared using direct thermal evaporation and the other prepared using a colloidal process. The organic ligands attached onto the colloidal gold NPs prevented the escape of the trapped charges from the particles and thus enhanced the retention characteristics of the programmed/erased signals. The low-voltage-driven EDL formation resulted in a programmed/erased memory signal ratio larger than 10(3) from the nonvolatile indium-gallium-zinc oxide transistor memory devices at voltages below 10 V, which could be held for >10(5) s. The utility of the electrolytes to operate memory devices demonstrated herein should provide an alternative strategy to realize cheap, portable electronic devices powered with thin-film batteries.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE