Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enrichment of Spatial eGenes Colocalized with Type 2 Diabetes Mellitus Genome-Wide Association Study Signals in the Lysosomal Pathwayopen access

Authors
Kim, YounyoungLee, Chaeyoung
Issue Date
Sep-2023
Publisher
MDPI
Keywords
autophagy; enrichment analysis; expression gene; lysosome; type 2 diabetes
Citation
APPLIED SCIENCES-BASEL, v.13, no.18
Journal Title
APPLIED SCIENCES-BASEL
Volume
13
Number
18
URI
https://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/44542
DOI
10.3390/app131810447
ISSN
2076-3417
Abstract
Genome-wide association studies (GWAS) have identified genetic markers associated with type 2 diabetes mellitus (T2DM). Additionally, tissue-specific expression quantitative trait loci (eQTL) studies have revealed regulatory elements influencing gene expression in specific tissues. We performed enrichment analyses using spatial eGenes corresponding to known T2DM GWAS signals to uncover T2DM pathological pathways. T2DM GWAS signals were obtained from the GWAS Catalog, and spatial eQTL data from T2DM-associated tissues, including visceral adipose tissue, liver, skeletal muscle, and pancreas, were sourced from the Genotype-Tissue Expression Consortium. The eGenes were enriched in Kyoto Encyclopedia of Genes and Genomes biological pathways using the Benjamini-Hochberg method. Colocalization analysis of 2857 independent T2DM GWAS signals identified 556 eGenes in visceral adipose tissue, 176 in liver, 715 in skeletal muscle, and 384 in pancreas (PFDR < 0.05 where PFDR is the false discovery rate). These eGenes showed enrichment in various pathways (PBH < 0.05 where PBH is the corrected P for the Benjamini-Hochberg multiple testing), especially the lysosomal pathway in pancreatic tissue. Unlike the mTOR pathway in T2DM autophagy dysregulation, the role of lysosomes remains poorly understood. The enrichment analysis of spatial eGenes associated with T2DM GWAS signals highlights the importance of the lysosomal pathway in autophagic termination. Thus, investigating the processes involving autophagic termination associated with lysosomes is a priority for understanding T2DM pathogenesis.
Files in This Item
Go to Link
Appears in
Collections
College of Natural Sciences > School of Systems and Biomedical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Chaeyoung photo

Lee, Chaeyoung
College of Natural Sciences (Department of Bioinformatics & Life Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE