Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of Substitutional Oxygen on Properties of Ti3C2Tx MXene Produced Using Recycled TiO2 Source

Authors
Iqbal, A.Kim, H.Oh, J.-M.Chae, J.Kim, J.Kim, M.Hassan, T.Gao, Z.Lee, J.Kim, S.J.Kim, D.Gogotsi, Y.Kwon, H.Koo, C.M.
Issue Date
Aug-2023
Publisher
John Wiley and Sons Inc
Keywords
carbothermal reduction; lattice defects; MXenes; oxygen substitution; TiO2 precursor
Citation
Small Methods, v.7, no.8
Journal Title
Small Methods
Volume
7
Number
8
URI
https://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/44598
DOI
10.1002/smtd.202201715
ISSN
2366-9608
Abstract
MXenes are an emerging class of 2D materials with unique properties including metallic conductivity, mechanical flexibility, and surface tunability, which ensure their utility for diverse applications. However, the synthesis of MXenes with high crystallinity and atomic stoichiometry in a low-cost process is still challenging because of the difficulty in controlling the oxygen substitute in the precursors and final products of MXenes, which limits their academic understanding and practical applications. Here, a novel cost-effective method is reported to synthesize a highly crystalline and stoichiometric Ti3C2Tx MXene with minimum substitutional oxygen impurities by controlling the amount of excess carbon and time of high-energy milling in carbothermal reduction of recycled TiO2 source. The highest used content (2 wt%) of excess-carbon yields TiC with the highest carbon content and minimal oxygen substitutes, which leads to the Ti3AlC2 MAX phase with improved crystallinity and atomic stoichiometry, and finally Ti3C2Tx MXene with the highest electrical conductivity (11738 S cm−1) and superior electromagnetic shielding effectiveness. Additionally, the effects of carbon content and substitutional oxygen on the physical properties of TiC and Ti3AlC2 are elucidated by density-functional-theory calculations. This inexpensive TiO2-based method of synthesizing high-quality Ti3C2Tx MXene can facilitate large-scale production and thus accelerate global research on MXenes. © 2023 Wiley-VCH GmbH.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jiwoong photo

Kim, Jiwoong
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE