Detailed Information

Cited 17 time in webofscience Cited 19 time in scopus
Metadata Downloads

Metabolism of Kaempferia parviflora Polymethoxyflavones by Human Intestinal Bacterium Bautia sp MRG-PMF1

Authors
Kim, MihyangKim, NayoungHan, Jaehong
Issue Date
Dec-2014
Publisher
AMER CHEMICAL SOC
Keywords
biotransformation; Balutia; demethylation; human intestinal bacterial; polymethoxyflavone
Citation
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, v.62, no.51, pp 12377 - 12383
Pages
7
Journal Title
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume
62
Number
51
Start Page
12377
End Page
12383
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11478
DOI
10.1021/jf504074n
ISSN
0021-8561
1520-5118
Abstract
Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Biotechnology & Natural Resource > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Jaehong photo

Han, Jaehong
대학원 (식물생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE