Detailed Information

Cited 28 time in webofscience Cited 27 time in scopus
Metadata Downloads

Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

Authors
Park, No-WonLee, Won-YongKim, Jin-ASong, KyungjunLim, HyuneuiKim, Wan-DooYoon, Soon-GilLee, Sang-Kwon
Issue Date
Feb-2014
Publisher
SPRINGER
Keywords
Iron oxide (Fe3O4); Thermal conductivity; 2D thin films; 3-omega technique; Callaway model; In-plane and out-of-plane
Citation
NANOSCALE RESEARCH LETTERS, v.9, no.1, pp 1 - 8
Pages
8
Journal Title
NANOSCALE RESEARCH LETTERS
Volume
9
Number
1
Start Page
1
End Page
8
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/12472
DOI
10.1186/1556-276X-9-96
ISSN
1556-276X
1556-276X
Abstract
We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-omega) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m center dot K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m center dot K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Kwon photo

Lee, Sang Kwon
자연과학대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE