Detailed Information

Cited 4 time in webofscience Cited 7 time in scopus
Metadata Downloads

Genomic and metabolic features of the Bacillus amyloliquefaciens group-B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis

Authors
Chun, Byung HeeKim, Kyung HyunJeong, Sang EunJeon, Che Ok
Issue Date
Feb-2019
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Keywords
Bacillus amyloliquefaciens; Bacillus velezensis; Bacillus siamensis; Pan-genome; Genomic and metabolic features
Citation
FOOD MICROBIOLOGY, v.77, pp 146 - 157
Pages
12
Journal Title
FOOD MICROBIOLOGY
Volume
77
Start Page
146
End Page
157
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/18253
DOI
10.1016/j.fm.2018.09.001
ISSN
0740-0020
1095-9998
Abstract
The genomic and metabolic features of the Bacillus amyloliquefaciens group comprising B. amyloliquefaciens, B. velezensis, and B. siamensis were investigated through a pan-genome analysis combined with an experimental verification of some of the functions identified. All B. amyloliquefaciens group genomes were retrieved from GenBank and their phylogenetic relatedness was subsequently investigated. Genome comparisons of B. amyloliquefaciens, B. siamensis, and B. velezensis showed that their genomic and metabolic features were similar; however species-specific features were also identified. Energy metabolism-related genes are more enriched in B. amyloliquefaciens, whereas secondary metabolite biosynthesis-related genes are enriched in B. velezensis. Compared to B. amyloliquefaciens and B. siamensis, B. velezensis harbors more genes in its core-genome which are involved in the biosynthesis of antimicrobial compounds, as well as genes involved in D-galacturonate and D-fructuronate metabolism. B. amyloliquefaciens, B. siamensis, and B. velezensis all harbor a xanthine oxidase gene cluster (xoABCDE) in their core-genomes that is involved in metabolizing xanthine and uric acid to glycine and oxalureate. A reconstruction of B. amyloliquefaciens group metabolic pathways using their individual pan-genomes revealed that the B. amyloliquefaciens group strains have the ability to metabolize diverse carbon sources aerobically, or anaerobically, and can produce various metabolites such as lactate, ethanol, acetate, CO2, xylitol, diacetyl, acetoin, and 2,3-butanediol. This study therefore provides insights into the genomic and metabolic features of the B. amyloliquefaciens group.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Che Ok photo

Jeon, Che Ok
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE