Detailed Information

Cited 4 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fine-scale population structure of Accumulibacter phosphatis in enhanced biological phosphorus removal sludge

Authors
Wang, QianShao, YongqiHuong, Vu Thi ThuPark, Woo-JunPark, Jong-MoonJeon, Che-Ok
Issue Date
Jul-2008
Publisher
KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY
Keywords
EBPR; diversity; Rhodocyclus; "Candidatus Accumulibacter phosphatis"; phaC
Citation
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, v.18, no.7, pp 1290 - 1297
Pages
8
Journal Title
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY
Volume
18
Number
7
Start Page
1290
End Page
1297
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/23697
ISSN
1017-7825
1738-8872
Abstract
To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting G(1PAO), G(2PAO), and G(3PAO) groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (G1NPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the G(4PAO) group of Accumulibacter phosphatis, which suggests that G1NPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Che Ok photo

Jeon, Che Ok
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE