Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Yeast synthetic biology for designed cell factories producing secretory recombinant proteinsopen access

Authors
Thak, Eun JungYoo, Su JinMoon, Hye YunKang, Hyun Ah
Issue Date
Mar-2020
Publisher
Oxford University Press
Keywords
protein trafficking pathway engineering; secretory recombinant proteins; synthetic glycosylation pathway; yeast cell factory
Citation
FEMS Yeast Research, v.20, no.2
Journal Title
FEMS Yeast Research
Volume
20
Number
2
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/38538
DOI
10.1093/femsyr/foaa009
ISSN
1567-1356
1567-1364
Abstract
Yeasts are prominent hosts for the production of recombinant proteins from industrial enzymes to therapeutic proteins. Particularly, the similarity of protein secretion pathways between these unicellular eukaryotic microorganisms and higher eukaryotic organisms has made them a preferential host to produce secretory recombinant proteins. However, there are several bottlenecks, in terms of quality and quantity, restricting their use as secretory recombinant protein production hosts. In this mini-review, we discuss recent developments in synthetic biology approaches to constructing yeast cell factories endowed with enhanced capacities of protein folding and secretion as well as designed targeted post-translational modification process functions. We focus on the new genetic tools for optimizing secretory protein expression, such as codon-optimized synthetic genes, combinatory synthetic signal peptides and copy number-controllable integration systems, and the advanced cellular engineering strategies, including endoplasmic reticulum and protein trafficking pathway engineering, synthetic glycosylation, and cell wall engineering, for improving the quality and yield of secretory recombinant proteins. © 2020 FEMS 2020.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hyun Ah photo

Kang, Hyun Ah
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE