Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth

Authors
Seo, YoungjaeKo, SeongchanHa, HeeboQaiser, NadeemLeem, MirineYoo, Seung JoJeong, Jong HyeonLee, KyungsubHwang, Byungil
Issue Date
Feb-2022
Publisher
Elsevier Ltd
Keywords
Carbonyl iron powder; Electron microscopy; Finite element method; Mechanical properties; Polymer–matrix composites
Citation
Composites Science and Technology, v.218
Journal Title
Composites Science and Technology
Volume
218
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/51859
DOI
10.1016/j.compscitech.2021.109150
ISSN
0266-3538
1879-1050
Abstract
Electromagnetic (EM) noise interference in high-frequency communication systems has attracted considerable attention. Flake-shaped iron-based alloy powder–polymer composites are the conventionally used EM noise suppressors; however, they exhibit low stretchability and cannot effectively suppress EM noise in the range of several gigahertz. The present study demonstrated the application of carbonyl iron powder (CIP)/polydimethylsiloxane (PDMS) composites as EM noise suppressors at 1–18 GHz. The CIP/PDMS composites presented excellent mechanical properties (rupture strength 6.57 MPa, elongation 71%) even at the maximum CIP content of 40 vol%. The tensile test results and finite element method (FEM) simulations revealed a lowering of the elongation with CIP loading content, which was attributed to the localized stress at the agglomerated CIPs. The spherical CIPs exhibited multicore shell interface structures with 2–300 nm ring gaps that were larger than the skin depth of pure iron. EM absorption characterization revealed that the magnetic loss tangent at 10 GHz increased linearly with increasing CIP content. Furthermore, the power loss at 10 GHz for the 40 vol% CIP/PDMS composite was 2.25 times higher than that for the 20 vol% CIP/PDMS composite. This indicated the effective suppression of EM noise in the gigahertz bandwidth with the addition of CIP. © 2021 Elsevier Ltd
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Byungil photo

Hwang, Byungil
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE