Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Myricetin induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells

Authors
Han, S.-H.Lee, J.-H.Woo, J.-S.Jung, G.-H.Jung, S.-H.Han, E.-J.Park, Y.-S.Kim, B.-S.Kim, S.-K.Park, B.-K.Choi, C.Jung, J.-Y.
Issue Date
Apr-2022
Publisher
NLM (Medline)
Keywords
apoptosis; autophagy; breast cancer; MAPK pathway; myricetin
Citation
International journal of molecular medicine, v.49, no.4
Journal Title
International journal of molecular medicine
Volume
49
Number
4
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/56692
DOI
10.3892/ijmm.2022.5110
ISSN
1107-3756
1791-244X
Abstract
Myricetin, a flavonoid found in fruits and vegetables, is known to have antioxidant and anticancer effects. However, the anticancer effects of myricetin on SK‑BR‑3 human breast cancer cells have not been elucidated. In the present study, the anticancer effects of myricetin were confirmed in human breast cancer SK‑BR‑3 cells. As the concentration of myricetin increased, the cell viability decreased. DAPI (4',6‑diamidino‑2‑phenylindole) and Annexin V/PI staining also revealed a significant increase in apoptotic bodies and apoptosis. Western blot analysis was performed to confirm the myricetin‑induced expression of apoptosis‑related proteins. The levels of cleaved PARP and Bax proteins were increased, and that of Bcl‑2 was decreased. The levels of proteins in the mitogen‑activated protein kinase (MAPK) pathway were examined to confirm the mechanism of myricetin‑induced apoptosis, and it was found that the expression levels of phosphorylated c‑Jun N‑terminal kinase (p‑JNK) and phosphorylated mitogen‑activated protein kinases (p‑p38) were increased, whereas that of phosphorylated extracellular‑regulated kinase (p‑ERK) was decreased. It was also demonstrated that myricetin induced autophagy by promoting autophagy‑related proteins such as microtubule‑associated protein 1A/1B‑light chain 3 (LC 3) and beclin 1. In addition, 3‑methyladenine (3‑MA) was used to evaluate the association between cell viability and autophagy in cells treated with myricetin. The results showed that simultaneous treatment with 3‑MA and myricetin promoted the apoptosis of breast cancer cells. Furthermore, treatment with a JNK inhibitor reduced cell viability, promoted Bax expression, and reduced the expression of p‑JNK, Bcl‑2, and LC 3‑II/I. These results suggest that myricetin induces apoptosis via the MAPK pathway and regulates JNK‑mediated autophagy in SK‑BR‑3 cells. In conclusion, myricetin shows potential as a natural anticancer agent in SK‑BR‑3 cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Changsun photo

Choi, Changsun
생명공학대학 (식품영양)
Read more

Altmetrics

Total Views & Downloads

BROWSE