Detailed Information

Cited 33 time in webofscience Cited 31 time in scopus
Metadata Downloads

Solution-processed quantum dot light-emitting diodes with PANI: PSS hole-transport interlayers

Authors
Park, Young RanDoh, Ji HoonShin, KooSeo, Young SooKim, Yun SeokKim, Soo YoungChoi, Won KookHong, Young Joon
Issue Date
Apr-2015
Publisher
ELSEVIER SCIENCE BV
Keywords
Charge balance; Electronic energy level alignment; Hole transport layer; PANI:PSS; Quantum dot light-emitting device
Citation
ORGANIC ELECTRONICS, v.19, pp 131 - 139
Pages
9
Journal Title
ORGANIC ELECTRONICS
Volume
19
Start Page
131
End Page
139
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/9672
DOI
10.1016/j.orgel.2014.12.030
ISSN
1566-1199
1878-5530
Abstract
For solution-processed quantum dot light-emitting devices (QD-LEDs), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/poly(N-vinylcarbozole) (PEDOT:PSS/PVK) bilayers have been widely used as the hole injection/transport layer. The high work function of the hole transport layer is crucial for high electroluminescence efficiency with balanced electron/hole charge injection. Herein, we report improvement of the performance of QD-LEDs by inserting a polyaniline (PANI)-poly (p-styrenesulfonic acid) (PSS) (PANI: PSS) hole-transport layer between the PVK and PEDOT: PSS layers. The insertion of the PANI: PSS layer significantly shifted the electronic energy levels of the PVK layers to lower values, which reduced the energy barrier of holes traveling to the QD layer by 0.22 eV. The QD-LEDs with PANI: PSS interlayer exhibited superior electric and electroluminescent characteristics. The hole-only devices with PANI: PSS interlayer also presented high hole injection and transport capability. Ultraviolet photoelectron spectroscopy (UPS) was used to investigate the electronic energy level alignment of the QD-LEDs with/without the PANI: PSS interlayer. The device performance results of QD-LEDs and hole-only devices indicated enhanced electric and electroluminescent characteristics for the PANI: PSS-inserted QD-LEDs with high hole conduction capability, in agreement with UPS findings. (C) 2015 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE