Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Grain boundary engineering strategy for simultaneously reducing the electron concentration and lattice thermal conductivity in n-type Bi2Te2.7Se0.3-based thermoelectric materialsopen access

Authors
Lee, SeunghyeokJung, Sung-JinPark, Gwang MinHong, JunpyoLee, Albert S.Baek, Seung-HyubKim, HeesukPark, Tae JooKim, Jin-SangKim, Seong Keun
Issue Date
Jul-2023
Publisher
Elsevier Ltd
Keywords
Atomic layer deposition; Carrier concentration; Grain boundary engineering; N-type Bi2Te2.7Se0.3 (BTS); Thermoelectric materials
Citation
Journal of the European Ceramic Society, v.43, no.8, pp 3376 - 3382
Pages
7
Indexed
SCIE
SCOPUS
Journal Title
Journal of the European Ceramic Society
Volume
43
Number
8
Start Page
3376
End Page
3382
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/112591
DOI
10.1016/j.jeurceramsoc.2023.02.017
ISSN
0955-2219
1873-619X
Abstract
This study demonstrates atomic layer deposition (ALD) of an extremely thin Al2O3 layer over n-type Bi2Te2.7Se0.3 to alleviate the adverse effects of multiple boundaries on their thermoelectric performance. Multiple boundaries reduce thermal conductivity (κ), but generate electrons, deviating from the optimum carrier concentration. Only one Al2O3 ALD cycle effectively suppresses Te volatilization at the grain boundaries, resulting in a decrease from 5.8 × 1019/cm3 to 3.6 × 1019/cm3 in the electron concentration. Concurrently, the one-cycle-Al2O3 coating produces fine grains, thus inducing numerous boundaries, ultimately suppressing the lattice κ from 0.64 to 0.33 W/m·K. A further increase in the number of Al2O3 cycles leads in a significant rise in the resistance, resulting in degradation of thermoelectric performance. Consequently, the ZT value is increased by 51 % as a result of Al2O3 coating with a single ALD cycle. Our approach offers new insights into the simultaneous reduction of the κ and electron concentration in n-type Bi2Te3-based materials. © 2023 The Authors
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Joo photo

Park, Tae Joo
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE