Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ampere-hour-scale zinc–air pouch cells

Authors
Shinde, Sambhaji S.Jung, Jin YoungWagh, Nayantara K.Lee, Chi HoKim, Dong-HyungKim, Sung-HaeLee, Sang UckLee, Jung-Ho
Issue Date
Jun-2021
Publisher
NATURE PUBLISHING GROUP
Citation
Nature Energy, v.6, no.6, pp.592 - 604
Indexed
SCIE
SCOPUS
Journal Title
Nature Energy
Volume
6
Number
6
Start Page
592
End Page
604
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113887
DOI
10.1038/s41560-021-00807-8
ISSN
2058-7546
Abstract
All-solid-state zinc–air pouch cells promise high energy-to-cost ratios with inherent safety; however, finding earth-abundant high power/energy cathodes and super-ionic electrolytes remains a fundamental challenge. Here we present realistic zinc–air pouch cells designed by the (101)-facet copper phosphosulfide [CPS(101)] as a cathode as well as anti-freezing chitosan-biocellulosics as super-ionic conductor electrolytes. The proposed CPS(101) exhibits trifunctional activity and stability (>30,000 cycles) towards reversible oxygen reactions and hydrogen evolution reactions, outperforming commercial Pt/C and RuO2. Furthermore, hydroxide super-ion conductors utilizing polymerized chitosan-biocellulosics reveal exceptional conductivity (86.7 mS cm−1 at 25 °C) with high mechanical/chemical robustness. High cell-level energy densities of 460 Wh kgcell–1/1,389 Wh l−1 are normally measured in pouch cells (1 Ah) with a cycle lifespan of 6,000/1,100 cycles at 25 mA cm−2 for 20/70% depths of discharge, and the highest densities we could achieve were 523 Wh kgcell–1/1,609 Wh l−1. Flexible pouch cells operate well at rates of 5–200 mA cm−2 over a broad temperature range of −20 to 80 °C. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE