Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Identification of Video Game Addiction Using Heart-Rate Variability Parametersopen access

Authors
Kim, Jung-YongKim, Hea-SolKim, Dong-JoonIm, Sung-KyunKim, Mi-Sook
Issue Date
Jul-2021
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
HRV parameter; game addiction; League of Legends; stress response; sensitivity; specificity; logistic regression
Citation
Sensors, v.21, no.14, pp 1 - 13
Pages
13
Indexed
SCIE
SCOPUS
Journal Title
Sensors
Volume
21
Number
14
Start Page
1
End Page
13
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116260
DOI
10.3390/s21144683
ISSN
1424-8220
1424-3210
Abstract
The purpose of this study is to determine heart rate variability (HRV) parameters that can quantitatively characterize game addiction by using electrocardiograms (ECGs). 23 subjects were classified into two groups prior to the experiment, 11 game-addicted subjects, and 12 non-addicted subjects, using questionnaires (CIUS and IAT). Various HRV parameters were tested to identify the addicted subject. The subjects played the League of Legends game for 30-40 min. The experimenter measured ECG during the game at various window sizes and specific events. Moreover, correlation and factor analyses were used to find the most effective parameters. A logistic regression equation was formed to calculate the accuracy in diagnosing addicted and non-addicted subjects. The most accurate set of parameters was found to be pNNI20, RMSSD, and LF in the 30 s after the "being killed" event. The logistic regression analysis provided an accuracy of 69.3% to 70.3%. AUC values in this study ranged from 0.654 to 0.677. This study can be noted as an exploratory step in the quantification of game addiction based on the stress response that could be used as an objective diagnostic method in the future.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF MEDIA, CULTURE, AND DESIGN TECHNOLOGY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE