Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancing TiO2 Precipitation Process through the Utilization of Solution-Gas-Solid Multiphase CFD Simulation and Experimentsopen access

Authors
Han, JunheeHa, MinchulLee, JunteakKim, DonghyunLee, Dohyung
Issue Date
Nov-2023
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
multiphase CFD simulation; particle distribution; particle size; precipitation process; thermal mixing rate; titanium dioxide
Citation
Processes, v.11, no.11, pp 1 - 19
Pages
19
Indexed
SCIE
SCOPUS
Journal Title
Processes
Volume
11
Number
11
Start Page
1
End Page
19
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116296
DOI
10.3390/pr11113110
ISSN
2227-9717
2227-9717
Abstract
Ensuring uniform particle size distribution is a crucial role in the precipitation process of manufacturing white pigment. This study presents a comprehensive investigation that combines multiphase computational fluid dynamics (CFD) simulations with experimental research to effectively address the challenge of achieving uniform particle distribution during TiO2 precipitation. The objective of this study was to enhance three-phase CFD simulations involving the mixing process of TIOSO₄ solution, steam as a gas phase, and solid seed particles. By analyzing the trajectories of the seed particles using CFD, the optimal injection position for the seed particles within the mixing process was determined. Subsequently, a lab scale test and real field test were conducted based on the insights gained from the CFD simulations. The particle size distribution of two different types of seed inlets was analyzed and compared using Transmission Electron Microscopy (TEM) and Scanning Electron Microscope (SEM). The findings of this study demonstrate that the developed multiphase CFD simulation can effectively enhance the precipitation process for the production of anatase titanium dioxide particles. Additionally, using the developed multiphase CFD solver, the real physics involved in the precipitation process were identified, leading to a better understanding of the process itself. Furthermore, TiO2 particles with uniform particle size had a positive impact on the washing and bleaching processes following the precipitation process, resulting in a significant reduction in the annual defect production rate. © 2023 by the authors.
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Do hyung photo

Lee, Do hyung
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE