Target Tracking Control of an Autonomous Aerial Vehicle in Unknown Environments
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Fan | - |
dc.contributor.author | Lu, Qiang | - |
dc.contributor.author | Huang, Na | - |
dc.contributor.author | Zhang, Botao | - |
dc.contributor.author | Choi, Youngjin | - |
dc.date.accessioned | 2025-05-16T08:00:35Z | - |
dc.date.available | 2025-05-16T08:00:35Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.issn | 1551-3203 | - |
dc.identifier.issn | 1941-0050 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125249 | - |
dc.description.abstract | This article deals with the problem of target tracking and detecting in unknown environments by designing two new algorithms for an autonomous aerial vehicle (AAV). First, an auto-Gaussian-GRU-predictive (AGUP) algorithm is designed to solve the tracking problem of a dynamic target in unknown environments. By integrating Gaussian process regression and gated recurrent unit neural networks, the AGUP algorithm can predict the motion trajectory of a dynamic target. Second, a Tabu search interpolated B-spline (TBL) algorithm is also proposed to solve the problem of optimal path planning for multiple stationary targets. The TBL algorithm can efficiently plan the visiting paths and also can enable the path smooth. Third, both AGUP and TBL algorithms are combined with the model predictive control (MPC) approach in order to guide AAVs to track and detect the targets. Finally, simulation and experimental results show that the AGUP-MPC algorithm exhibits excellent tracking capability. In addition, the TBL-MPC algorithm effectively plans the optimal and smooth detection path and controls AAVs to orderly visit multiple stationary targets. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | - |
dc.title | Target Tracking Control of an Autonomous Aerial Vehicle in Unknown Environments | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TII.2025.3538065 | - |
dc.identifier.scopusid | 2-s2.0-86000552077 | - |
dc.identifier.wosid | 001470655300001 | - |
dc.identifier.bibliographicCitation | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, v.21, no.6, pp 4377 - 4387 | - |
dc.citation.title | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS | - |
dc.citation.volume | 21 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 4377 | - |
dc.citation.endPage | 4387 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Industrial | - |
dc.subject.keywordPlus | UAV | - |
dc.subject.keywordPlus | ROBUST | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordAuthor | Target tracking | - |
dc.subject.keywordAuthor | Autonomous aerial vehicles | - |
dc.subject.keywordAuthor | Prediction algorithms | - |
dc.subject.keywordAuthor | Heuristic algorithms | - |
dc.subject.keywordAuthor | Trajectory | - |
dc.subject.keywordAuthor | Inspection | - |
dc.subject.keywordAuthor | Dynamics | - |
dc.subject.keywordAuthor | Angular velocity | - |
dc.subject.keywordAuthor | Vehicle dynamics | - |
dc.subject.keywordAuthor | Uncertainty | - |
dc.subject.keywordAuthor | Auto-Gaussian-GRU-predictive-model predictive control (AGUP-MPC) | - |
dc.subject.keywordAuthor | target tracking control | - |
dc.subject.keywordAuthor | trajectory optimization | - |
dc.subject.keywordAuthor | TS-B-Spline-model predictive control (TBL-MPC) | - |
dc.subject.keywordAuthor | autonomous aerial vehicle (AAV) | - |
dc.identifier.url | https://xplorestaging.ieee.org/document/10908716?denied= | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.