Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Strategic PbS quantum dot-based multilayered photoanodes for high efficiency quantum dot-sensitized solar cells

Authors
Basit, Muhammad AbdulAbbas, Muhammad AwaisJung, Eun SunPark, Young MinBang, Jin HoPark, Tae Joo
Issue Date
Sep-2016
Publisher
Pergamon Press Ltd.
Keywords
QDSSCs; Interfacial recombination barrier; multilayered photoanode; SILAR
Citation
Electrochimica Acta, v.211, pp.644 - 651
Indexed
SCIE
SCOPUS
Journal Title
Electrochimica Acta
Volume
211
Start Page
644
End Page
651
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/13054
DOI
10.1016/j.electacta.2016.06.075
ISSN
0013-4686
Abstract
In2S3 is employed as a new passivation layer in PbS quantum dot-based multilayered photoanodes to coalesce the improvement in photocurrent density (J(SC)) and open-circuit voltage. Suppression of detrimental interfacial charge carrier recombination in In2S3/PbS/TiO2 and In2S3/PbS/CdS/TiO2 multilayered photoanodes, attributed to the In2S3 passivation layer, leads to increased V-OC in both photoanodes. In particular, In2S3/PbS/CdS/TiO2 multilayered photoanode exhibited a substantial improvement of similar to 36% (from 3.2 to 4.3%) in power conversion efficiency, which is attributed to significant increase in J(SC) value of similar to 26 mA/cm(2) by enhanced PbS loading and co-sensitizing effect of CdS along with substantially suppressed interfacial recombination. In-depth electrochemical impedance spectroscopic analysis revealed that the resistance against back-transfer of electrons to electrolyte can be subtly modulated by incorporating In2S3 deposition over PbS. Further, this multiple passivation layer turned out to be beneficial for improving photocorrosion of PbS in a polysulfide electrolyte. (C) 2016 Elsevier Ltd. All rights reserved.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bang, Jin Ho photo

Bang, Jin Ho
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE