Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Upper extremity assist exoskeleton robot

Full metadata record
DC Field Value Language
dc.contributor.authorKhan, Abdul Manan-
dc.contributor.authorYun, Deok-won-
dc.contributor.authorHan, Jung-Soo-
dc.contributor.authorShin,Kyoosik-
dc.contributor.authorHan, Chang-Soo-
dc.date.accessioned2021-06-23T01:24:38Z-
dc.date.available2021-06-23T01:24:38Z-
dc.date.created2021-01-22-
dc.date.issued2014-08-
dc.identifier.issn1944-9445-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/25475-
dc.description.abstractNeed to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess motor function and generate the command for the robots to act accordingly with complex human structure. In this paper, we focus on developing new technique for the upper limb power exoskeleton in which load is handled by the human subject and not by the robot. Main challenge along with the design complexity is to find the desired human motion intention and to develop an algorithm to assist as needed accordingly. For this purpose, we used newly developed Muscle Circumference Sensor (MCS) instead of electromyogram (EMG) sensors. MCS together with the load cells is used to estimate the desired human intention by which desired trajectory is generated. The desired trajectory is then tracked by passivity based adaptive control technique. Developed Upper limb power exoskeleton has seven degrees of freedom (DOF) in which five are passive and two are active. Active joints include shoulder and elbow, powered by electric motors and move in Sagittal plane while abduction and adduction motion in shoulder joint is provided by the passive joint. Performance of the exoskeleton is evaluated experimentally by a neurologically intact subject. The results show that after adjusting the motion intention recognition algorithm for the subject, the robot assisted effectively and the subject only felt nominal load regardless of the weight in hand. © 2014 IEEE.-
dc.language영어-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleUpper extremity assist exoskeleton robot-
dc.typeArticle-
dc.contributor.affiliatedAuthorShin,Kyoosik-
dc.identifier.doi10.1109/ROMAN.2014.6926366-
dc.identifier.scopusid2-s2.0-84937611323-
dc.identifier.wosid000366603200146-
dc.identifier.bibliographicCitationIEEE RO-MAN 2014 - 23rd IEEE International Symposium on Robot and Human Interactive Communication: Human-Robot Co-Existence: Adaptive Interfaces and Systems for Daily Life, Therapy, Assistance and Socially Engaging Interactions, pp.892 - 898-
dc.relation.isPartOfIEEE RO-MAN 2014 - 23rd IEEE International Symposium on Robot and Human Interactive Communication: Human-Robot Co-Existence: Adaptive Interfaces and Systems for Daily Life, Therapy, Assistance and Socially Engaging Interactions-
dc.citation.titleIEEE RO-MAN 2014 - 23rd IEEE International Symposium on Robot and Human Interactive Communication: Human-Robot Co-Existence: Adaptive Interfaces and Systems for Daily Life, Therapy, Assistance and Socially Engaging Interactions-
dc.citation.startPage892-
dc.citation.endPage898-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaRobotics-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryRobotics-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusREHABILITATION-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6926366?arnumber=6926366&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF ROBOT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Kyoo sik photo

Shin, Kyoo sik
ERICA 공학대학 (DEPARTMENT OF ROBOT ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE