Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analysis of Scratches Formed on Oxide Surface during Chemical Mechanical Planarization

Authors
Choi, Jae-GonPrasad, Y. NagendraKim, In-KwonKim, In-GonKim, Woo-JinBusnaina, Ahmed A.Park, Jin-Goo
Issue Date
2010
Publisher
Electrochemical Society, Inc.
Keywords
abrasives; cerium compounds; chemical mechanical polishing; friction; optimisation; planarisation; probability; silicon compounds; slurries
Citation
Journal of the Electrochemical Society, v.157, no.2, pp.H186 - H191
Indexed
SCIE
SCOPUS
Journal Title
Journal of the Electrochemical Society
Volume
157
Number
2
Start Page
H186
End Page
H191
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/40554
DOI
10.1149/1.3265474
ISSN
0013-4651
Abstract
Scratch formation on patterned oxide wafers during the chemical mechanical planarization process was investigated. Silica and ceria slurries were used for polishing the experiments to observe the effect of abrasives on the scratch formation. Interlevel dielectric patterned wafers were used to study the scratch dimensions, and shallow trench isolation patterned wafers were used to study the effect of polishing parameters, such as pressure and rotational speed (head/platen). Similar shapes of scratches (chatter type) were observed with both types of slurries. The length of the scratch formed might be related to the period of contact between the wafer and the pad. Large particles would play a significant role in increasing the number of scratches. The probability of scratch generation is more at higher pressures due to higher friction force and removal rate. The optimization of the head to platen velocity could decrease the number of scratches.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jin Goo photo

Park, Jin Goo
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE