Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Near theoretical ultra-high magnetic performance of rare-earth nanomagnets via the synergetic combination of calcium-reduction and chemoselective dissolutionopen access

Authors
Lee, JiminHwang, Tae-YeonCho, Hong-BaekKim, JongryoulChoa, Yong-Ho
Issue Date
Oct-2018
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.8, no.1, pp 1 - 11
Pages
11
Indexed
SCI
SCIE
SCOPUS
Journal Title
Scientific Reports
Volume
8
Number
1
Start Page
1
End Page
11
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/5233
DOI
10.1038/s41598-018-33973-z
ISSN
2045-2322
Abstract
Rare earth permanent magnets with superior magnetic performance have been generally synthesized through many chemical methods incorporating calcium thermal reduction. However, a large challenge still exists with regard to the removal of remaining reductants, byproducts, and trace impurities generated during the purifying process, which serve as inhibiting intermediates, inducing productivity and purity losses, and a reduction in magnetic properties. Nevertheless, the importance of a post-calciothermic reduction process has never been seriously investigated. Here, we introduce a novel approach for the synthesis of a highly pure samarium-cobalt (Sm-Co) rare earth nanomagnet with near theoretical ultra-high magnetic performance via consecutive calcium-assisted reduction and chemoselective dissolution. The chemoselective dissolution effect of various solution mixtures was evaluated by the purity, surface microstructure, and magnetic characteristics of the Sm-Co. As a result, NH4Cl/methanol solution mixture was only capable of selectively rinsing out impurities without damaging Sm-Co. Furthermore, treatment with NH4Cl led to substantially improved magnetic properties over 95.5% of the M-s for bulk Sm-Co. The mechanisms with regard to the enhanced phase-purity and magnetic performance were fully elucidated based on analytical results and statistical thermodynamics parameters. We further demonstrated the potential application of chemoselective dissolution to other intermetallic magnets.
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOA, YONG HO photo

CHOA, YONG HO
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE