Detailed Information

Cited 3 time in webofscience Cited 2 time in scopus
Metadata Downloads

Mechanical Durability of Flexible/Stretchable a-IGZO TFTs on PI Island for Wearable Electronic Application

Authors
Han, Ki-LimLee, Won-BumKim, Yong-DuckKim, Jun-HyeokChoi, Byong-DeokPark, Jin-Seong
Issue Date
Nov-2021
Publisher
AMER CHEMICAL SOC
Keywords
amorphous metal oxide semiconductor thin-film transistors; flexible/stretchable display; mechanical stress; organic passivation layer; stress distribution (von-Mises stress); wearable electronic device
Citation
ACS APPLIED ELECTRONIC MATERIALS, v.3, no.11, pp.5037 - 5047
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED ELECTRONIC MATERIALS
Volume
3
Number
11
Start Page
5037
End Page
5047
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/140427
DOI
10.1021/acsaelm.1c00806
Abstract
In this work, we examined the mechanical durability of island-type a-IGZO thin-film transistors (TFTs). Island TFTs were fabricated on polyimide (PI) islands and were transferred to a thermoplastic polyurethane (TPU) film. In repeated bending tests with a 1.5 mm bending radius, island TFTs showed less electrical property deterioration than TFTs on a PI film. We confirmed that the TPU, which has a lower elastic modulus compared to PI, effectively reduced the curvature of PI island even under the same bending test conditions. Furthermore, an organic passivation layer was applied on the upper part of the PI island. The 3 μm thick organic passivation layer made the TFT layer more stable against bending and elongation stress. Island TFTs with an organic passivation layer showed a change in the saturation mobility of only -2.3% and a change in the threshold voltage of -0.22 V even after 250 000 repetitive bending tests. Additionally, no change in electrical properties was observed even after 10 000 repeated stretching test cycles under 30% uniaxial elongation. Finally, we fabricated island-type logic circuits based on a-IGZO TFTs for wearable electronic applications. Using the organic passivation layer, we showed that the NMOS pseudoinverter and NAND gate also operated without significant deterioration in 100 000 repeated bending cycles and 5000 repeated stretching cycles. After applying repeated mechanical stresses, the high output voltage (VOH) and low output voltage (VOL) of the inverter only changed from 8.85 to 8.93 V and from 0.44 to 0.50 V, respectively. In NAND gates, VOH and VOL only changed slightly from 8.46 to 8.56 V and from 0.45 to 0.55 V, respectively.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOI, BYONG DEOK photo

CHOI, BYONG DEOK
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE