Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Empirical Validation of an Auxetic Structured Foot With the Powered Transfemoral Prosthesis

Authors
Hong, WoolimKumar, Namita AnilPatrick, ShawaneeUm, Hui-JinKim, Heon-SuKim, Hak-SungHur, Pilwon
Issue Date
Oct-2022
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Auxetic structure; prosthetics and exoskeletons; prosthetic foot design; toe joint
Citation
IEEE ROBOTICS AND AUTOMATION LETTERS, v.7, no.4, pp.11228 - 11235
Indexed
SCIE
SCOPUS
Journal Title
IEEE ROBOTICS AND AUTOMATION LETTERS
Volume
7
Number
4
Start Page
11228
End Page
11235
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/171437
DOI
10.1109/LRA.2022.3194673
ISSN
2377-3766
Abstract
The toe joint has been studied since it plays a critical role in human ambulation, such as stability, energy storage and propulsion. Despite its critical role, only a few studies have used and tested toe-jointed feet in powered prosthetic walking. In previous studies, we proposed 3D printable prosthetic feet with auxetic structures that provide human-like toe joint properties, termed a flat-toe (FT) foot and a curved-toe (CT) foot. The numerical simulation revealed that these feet could mimic the function of the biological toe joint, but they have not yet been validated in an empirical manner. In this study, we conducted a walking experiment with three subjects (i.e., two able-bodied and one amputee) using a powered prosthesis and two custom-designed prosthetic feet: the FT foot and CT foot. To evaluate the given feet, several metrics (e.g., joint kinematics/kinetics, ground reaction forces, and gait symmetry) were utilized. According to the results, the CT foot exhibited greater toe flexion, resulting in an earlier heel-off, a later toe-off, and a longer push-off duration when compared to the FT foot. Furthermore, less ground reaction forces were measured from both the prosthesis and intact sides, and a more symmetric gait was achieved with the CT foot. Another interesting finding was that the CT foot affected the user's thigh kinematics, leading to an improved gait phase estimation while walking. We concluded that the CT foot allowed for a more natural roll-over, resulting in better consistency and symmetry while walking with the powered prosthesis.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hak Sung photo

Kim, Hak Sung
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE