Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Maximum spreading of droplet-particle collision covering a low Weber number regime and data-driven prediction modelopen access

Authors
Yoon, I.Chergui, J.Juric, D.Shin, S.
Issue Date
1-Oct-2022
Publisher
American Institute of Physics Inc.
Citation
Physics of Fluids, v.34, no.10
Journal Title
Physics of Fluids
Volume
34
Number
10
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/30523
DOI
10.1063/5.0117839
ISSN
1070-6631
Abstract
In the present study, the maximum spreading diameter of a droplet impacting with a spherical particle is numerically studied for a wide range of impact conditions: Weber number (We) 0-110, Ohnesorge number (Oh) 0.001 3-0.786 9, equilibrium contact angle (θeqi) 20°-160°, and droplet-To-particle size ratio (ω) 1/10-1/2. A total of 2600 collision cases are simulated to enable a systematic analysis and prepare a large dataset for the training of a data-driven prediction model. The effects of four impact parameters (We, Oh, θeqi, and ω) on the maximum spreading diameter (β*max) are comprehensively analyzed, and particular attention is paid to the difference of β*max between the low and high Weber number regimes. A universal model for the prediction of β*max, as a function of We, Oh, θeqi, and ω, is also proposed based on a deep neural network. It is shown that our data-driven model can predict the maximum spreading diameter well, showing an excellent agreement with the existing experimental results as well as our simulation dataset within a deviation range of ±10%. © 2022 Author(s).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Seungwon photo

Shin, Seungwon
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE