Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Surface Chemical Reactions During Atomic Layer Deposition of Zinc Oxynitride (ZnON)

Authors
Ngoc Van, Tran ThiShong, Bonggeun
Issue Date
Nov-2023
Publisher
Korean Institute of Metals and Materials
Keywords
Computational chemistry; N-doped ZnO; Surface chemistry; Zinc nitride; Zinc oxide; ZnO<sub>x</sub>N<sub>y</sub>
Citation
Electronic Materials Letters
Journal Title
Electronic Materials Letters
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/31864
DOI
10.1007/s13391-023-00467-8
ISSN
1738-8090
2093-6788
Abstract
Atomic layer deposition (ALD) is a promising technique for fabricating high-quality thin films. For improving the process conditions and material quality of ALD, understanding the surface chemical mechanisms at the molecular level is important as the entire ALD process is based on the reactions of precursors on the substrate surfaces. Zinc oxynitride (ZnON) is gaining significant research interest as a p-type semiconductor material. Although the ALD of ZnON can be performed by dosing H2O and NH3 as oxygen and nitrogen sources, respectively, the elemental ratio of O and N in the deposited film differs considerably from that in the gaseous sources. In this study, the surface reactions of ZnON ALD are analyzed employing density functional theory calculations. All the ALD surface reactions of ZnO and ZnN are facile and expected to occur rapidly. However, the substitution of a surface *NH2 by H2O to form *OH is preferred, whereas the inverse reaction is implausible. We propose that the differences in the reactivity could originate from the higher bond energy of Zn–O than that of Zn–N. Graphical Abstract: [Figure not available: see fulltext.]. © 2023, The Author(s) under exclusive licence to The Korean Institute of Metals and Materials.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Chemical Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shong, Bong geun photo

Shong, Bong geun
Engineering (Chemical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE