근전도 패턴 인식 및 분류 기반 다자유도 전완 의수 개발Development of Multi-DoFs Prosthetic Forearm based on EMG Pattern Recognition and Classification
- Other Titles
- Development of Multi-DoFs Prosthetic Forearm based on EMG Pattern Recognition and Classification
- Authors
- 이슬아; 최유나; 양세동; 홍근영; 최영진
- Issue Date
- Sep-2019
- Publisher
- 한국로봇학회
- Keywords
- Prosthetic Forearm; Myoelectric Prosthesis; Multilayer Perceptron; Pattern Recognition
- Citation
- 로봇학회 논문지, v.14, no.3, pp 228 - 235
- Pages
- 8
- Indexed
- KCI
- Journal Title
- 로봇학회 논문지
- Volume
- 14
- Number
- 3
- Start Page
- 228
- End Page
- 235
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4076
- DOI
- 10.7746/jkros.2019.14.3.228
- ISSN
- 1975-6291
2287-3961
- Abstract
- This paper presents a multiple DoFs (degrees-of-freedom) prosthetic forearm and sEMG (surface electromyogram) pattern recognition and motion intent classification of forearm amputee. The developed prosthetic forearm has 9 DoFs hand and single-DoF wrist, and the socket is designed considering wearability. In addition, the pattern recognition based on sEMG is proposed for prosthetic control. Several experiments were conducted to substantiate the performance of the prosthetic forearm.
First, the developed prosthetic forearm could perform various motions required for activity of daily living of forearm amputee. It was able to control according to shape and size of the object.
Additionally, the amputee was able to perform ‘tying up shoe’ using the prosthetic forearm. Secondly, pattern recognition and classification experiments using the sEMG signals were performed to find out whether it could classify the motions according to the user’s intents. For this purpose, sEMG signals were applied to the multilayer perceptron (MLP) for training and testing. As a result, overall classification accuracy arrived at 99.6% for all participants, and all the postures showed more than 97% accuracy.
- Files in This Item
-
Go to Link
- Appears in
Collections - COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF ROBOT ENGINEERING > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.